翻訳と辞書 |
Pentagonal hexecontahedron : ウィキペディア英語版 | Pentagonal hexecontahedron
In geometry, a pentagonal hexecontahedron is a Catalan solid, dual of the snub dodecahedron. It has two distinct forms, which are mirror images (or "enantiomorphs") of each other. It is also well-known to be the Catalan solid with the most vertices. Among the Catalan and Archimedean solids, it has the second largest number of vertices, after the truncated icosidodecahedron, which has 120 vertices. ==Geometry== The faces are irregular pentagons with two long edges and three short edges. The ratio of edge lengths is about 1:1.7489525667362. The faces have four obtuse angles of about 118.13662 degrees each, and one acute angle (between the two long edges) of about 67.45351 degrees. The dihedral angle is about 153.178732558 degrees between all faces. Note that the face centers of the snub dodecahedron cannot serve directly as vertices of the pentagonal hexecontahedron: the four triangle centers lie in one plane but the pentagon center does not; it needs to be radially pushed out to make it coplanar with the triangle centers. Consequently, the vertices of the pentagonal hexecontahedron do not all lie on the same sphere and by definition it is not a zonohedron.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Pentagonal hexecontahedron」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|